Executable meta-modeling in Kermeta with a rpg
formalism

Ward Loos,
University of Antwerp,
ward.loos@student.ua.ac.be

Abstract

In this paper I report on my experience in implementing a role-playing
game formalism using the executable meta-language Kermeta and converting
AToM? models into Kermeta models. I also reflect on the differences and sim-
ilarities between kermeta and the tools used in the Model driven engineering
course for domain-specific modeling.

Keywords: modeling, meta-modeling, kermeta, atom3, ecore,
domain-specific modeling

1. Introduction

After implementing a role-playing game formalism with different domain-
specific modeling techniques and tools, I report on my findings using the
executable meta-modeling language kermeta and its workbench. These pre-
vious experiences include metaDepth and AToM? with coded and rule-based
operational semantics.

Using different tools also implicates different output formats and files. I
implemented a conversion tool to convert models generated by AToM? into
valid models for Kermeta.

All the code mentioned in this report is available so the reader can try
out some things himself.

In section [2] we take a look at the Kermeta language and framework,
section |3| details how a role-playing game formalism can be implemented
in kermeta, section 4| compares some other tools/frameworks with kermeta,
section [o| explains how we can convert atom3 models to kermeta models and
finally section [f] summarizes my findings on kermeta.

Preprint submitted to Model Driven Engineering January 21, 2013

mailto:ward.loos@student.ua.ac.be

2. Kermeta

2.1. Kermeta language

Kermeta Muller et al.| (2005)) aims to be a common denominator of mod-
eling languages which allows it to describe both the structure and behavior
of models (as seen in Figure [1)). In other words, it’s a meta-modeling lan-
guage and an action language. Kermeta extends the Essential Meta-Object
Facilities (EMOF) [OMG, (2006)) language from the OMG[] and is compliant
with the Object Constraint Language (OCL) [OMG, (2012).

Metamodeling

MOF, ECORE \

OCL

Semantics {ﬁa Constraints

CRFT
Transformations

Figure 1: Kermeta positioning

Kermeta follows primarily the object-orientend paradigm. It has support
for (abstract) classes and methods, properties, multiple inheritance, excep-
tions, generics (templates), namespaces (packages), ... However, kermeta
also supports aspect-oriented programming and design by contract (invari-
ants and pre- and postconditions). The aspect-oriented features allow you
to weave in code for implementing something like, for example, a tracer or
a logger. It’s also statically typed. Something is does lack are constructors.
This choice was made to remain compliant with the MOF speciﬁcation.ﬂ If
you really need a constructor, you could always use a method init(...) or
something of that form. Some features I found kermeta lacked is an elsif

1Object Management Group - http://www.omg.org
Zhttp://www.kermeta.org/documents/faq/constructors

http://www.omg.org
http://www.kermeta.org/documents/faq/constructors

keyword and no return, break or continue keywords. These omissions some-
times really limit your options in controlling the flow through your program
or vastly worse the cyclomatic complexity.

Kermeta supports model navigation expressions including, but not lim-
ited to, expressions defined in the OCL which are implemented as lambda
expressions. Associations with multiplicities between objects are defined in
the form of attributes and references. An attribute is a link with containment
(composition in UML) whereas a reference is just a link (one way association
in UML). Opposite properties allow you to create a two-way link between
objects (e.g. A.a#b and B.b#a).

Kermeta is implemented on top of the Java language. Internally it uses
Java types and functions to implement the language. Kermeta gives you the
possibility to import Java code in Kermeta or to use models in Java code. It
is interpreted by Java code when you run a kermeta program.

2.2. Models

The meta-model you create is saved as a kermeta specific file (.kmt). How-
ever, to be able to create instance models you need a meta-model formatted
in Ecore (.ecore) which is an UML dialect specified by Eclipse. The cre-
ated meta-models are stored in the XML Metadata Interchange (XMI) OMG
(2011) format. Kermeta relies on the Eclipse Modeling Framework (EMF) [Eclipse
(2013)) to nicely display these models. This is a standard for exchanging meta-
data information via Extensible Markup Language (XML). This can be used
for metadata whose meta-model can be expressed in MOF', and by extension,
in kermeta. The EMF is also used to create instance models which are also
XMI files and stored as an .xmi file. Ecore needs a root element in your
meta-model to be able to generate a model. This implicates that an element
only can be defined as a child of another element (an attribute) or as the
root element.

Note that EMF is not really necessary because all the files are plain XML.
If you want, you can create the XML files manually but this would only be
viable for very small (meta-)models.

2.3. Platform

Kermeta can be downloaded as a plugin for the Eclipse IDE (available
from the marketplace). The plugin provides syntax highlighting, type check-
ing, an interpreter and a visual debugger. The plugin also provides some
additional menu options: see dependent files, see file dependencies, generate

Ecore and Generate Km (Kermeta Model). The first 2 options can be pretty
helpful when dealing with complex models. Especially see dependent files; it
allows you think about what a change in your model could cause. Generate
Ecore allows you to convert your kmt meta-model to an ecore file. This file is
needed when working in EMF and when loading a resource (model) in your
code.

The EMF is also required so I will describe it here as a part of the kermeta
platform. It allows you to open ecore files and view its contents in a more
visual way than just displaying XML code (see section EMF' lets you
generate an ecore diagram (.ecorediag) from an ecore file. This looks like
an UML diagram and gives a better view on the structure you generated.
Models can be created in EMF without writing any code. You create a
dynamic instance of your root element and add children to it. If opposite
properties are set, you will only have to set the association in one element
and EMF will fill in the other one. EMF also provides a list of elements
suitable for the association you are trying to fill in.

Note that it is possible to use different modeling tools than EMF. As long
as they support XMI (and ecore) you should be fine. I didn’t test this myself
because I had no reason to do so. I imagine this could be very helpful when
working with kermeta having prior experience in another tool than EMF.

The combination of kermeta and EMF basically enables you to take 2
approaches for coming to a solution. A coding approach in which you im-
plement the meta-model in a kermeta source file (.kmt) and implement the
action code as well. The ecore file is then only used to create and verify mod-
els. Second approach provides a more high-level way and would probably be
preferable over the first. Design your solution first in an ecore diagram, gen-
erate an ecore file and finally generate a kmt file. Then you can fill in the
necessary behavior code. In the first approach you would probably make an
UML diagram anyway.

I went with the first approach because the kermeta documentation is
pretty sparse on information about EMF. So at first, it wasn’t very clear to
me what role it played. In addition to that, I could rely on the code from the
assignments we had to make for the course (see section |4)) and just translate
the code.

A kermeta program can be be run directly from eclipse. There is also a
standalone package available which lets you run kermeta programs from the
command line as follows:

java -jar kermeta_standalone.jar -U filename -C package::Class -0 operation

2.4. Kermeta 2

Version 2 was released somewhere in 2012. It introduces a central con-
figuration file and forces some minor differences in the code. [| There are
probably also changes in the core framework. The main difference is under
the hood. Kermeta can now be compiled to Scala byte code which introduces
a massive speed improvement over the interpreter used in kermeta 1.

I chose to stick with version 1 (after starting with version 2) because
most of the documentation is targeted at version 1. This doesn’t matter too
much though because the differences are small. The eclipse plugin however
regressed and lacks some features. Generating ecore files from kmt for ex-
ample is missing. This removes a lot of flexibility. Probably not a problem
for a experienced kermeta developer but it presented me with a problem.
The role-playing game (RPGame) formalism is fairly simple and the models
are not too big so speed isn’t a factor for me (checking invariants however is
already slow).

3. Implementing the role-playing game formalism in Kermeta

3.1. Role-playing game formalism

Short overview of the rpg formalism used in the implementation. This
formalism is covered in greater detail in section

A game can contain one or multiple scenes which contain one or multiple
tiles themselves. There is one hero character and multiple villains. All the
characters are placed on a tile. Each turn the hero can move or attack
(whatever is possible) and villains in the same scene can do the same. A
hero can also pickup items on tiles like keys for doors, weapons and goals.
Tiles can also The game ends when the hero collects all goals or dies. Moving
between scenes can be achieved by going through a door.

3.2. Meta-model

3.2.1. Files
You can find the code discussed in section [3.2)in metamodel /RPGame.kmt,
metamodel /RPGame.ecore and metamodel/RPGame.ecorediag

3http://www.kermeta.org/documents/user_doc/migrationguide

http://www.kermeta.org/documents/user_doc/migrationguide

[H Rand] H Person <<datatype>>
& anorderesen: ot | 2 IS £ String
@ any(Orderedset) : Object = damage : Integer <javaclass>> java.lang.String
<datatype>s < health : Integer
£ Boolean @ move() <<datatype>>
<javaclass>> java.lang.Boolean @ checkMove() : Boolean 15 jKermetaSp.ec\alTypesAI@si
@ attack() <<javaclass>> java.lang.Object
<<datatype>> @ checkAttack() : Boolean
=1 Imﬁer @ checkDead() : Boolean
<javaclass>> java.lang.Integer @ doAction()
pers}(ZF {E
/'M({ [Villain B Goal
i [BGal |
i W «
[E[lE B Weapon ‘ ‘ B Key | = collected : Boolean
o X : Integer @ attack() = damage : Integer ‘)
o y: Integer 0.4 @ checkAttack() : Boolean B
@ asString(): String | neighbdurs key/O-key:
e s —
I | \\/ villais I o
[B Trap] [E Obstacle | [H Door] H Hero oall
= damage : Integer }:| = Basi = locked : Boolean
H BasicTile ® move)
sfene @ attack()
@ checkAttack() : Boolean
[resr
L1
© name : String

scenes

—— 1
[ose |

Figure 2: RPGame Ecore diagram

3.2.2. Game

Game is the root element of our formalism. It holds the scenes, the hero
and the villains. It also keeps a references to the goals. This is necessary
to be able to determine if the hero has won. We need at least one scene,
one goal and exactly one hero. Villains are optional. The operation step()
implements one tick in the game in which the hero and villains in the same
scene as the hero get do to an action (move or attack). This will typically
be called in a loop which keeps running until the game finishes.

class Game {

attribute scenes : oset Scenel[l..%]
attribute hero : Hero

attribute villains : oset Villain[O..*]
reference goals : oset Goall[l..x]

operation step() is do ... end

}

3.2.3. Scene

A scene defines the setting in our game (e.g. Castle, Forest, City, ...). It
holds one or more tiles which define the size of the scene. Scene has also a
name which can be used for pretty printing (this attribute is also accessible
in tile objects so they can print their location).

class Scene {

attribute name : String
attribute tiles : oset Tilel[l..x*]
}

3.2.4. Tile

Tile is the most basic of tiles. It has attributes x and y for a notion
of position. It also holds a reference to its scene, neighbours and possibly
a person standing on it. The neighbours reference is mostly useful for the
person standing on the tile so it can determine what actions it can do. The
operation asString() returns the tile represented as a string in the form:
SceneName< z,y >

class Tile {

attribute x : Integer

attribute y : Integer

reference scene : Scene

reference neighbours : oset Tile[O..4]#neighbours
reference person : Person#location

operation asString() : String is do ... end

}

BasicTile inherits from Tile and adds to possibility to place an item on
a tile which then can be picked up by the hero.

class BasicTile inherits Tile {

attribute item : Item

b

Door inherits from Tile and allows the hero to move between scenes. A
door can be locked which prevents the hero from going through it. However,
the hero can unlock the door if he has picked up the key to which the door
references. The attribute locked and the reference key are not linked to
eachother so there aren’t any conditions. Every combination is possible. For
example, a door can be locked but not have a key set. This means the hero
will never be able to go through the door. This could useful in forcing the
hero through the scenes. The invariant doorCheck enforces that a door only
links to a door in another scene.

class Door inherits Tile {
attribute locked : Boolean

reference key : Key
reference to : Door#to

inv doorCheck is do self.scene != self.to.scene end

by

Trap inherits from Tile and can deal damage to the hero when he moves
onto the trap.

class Trap inherits Tile {

attribute damage : Integer

b

Obstacle inherits from Tile and doesn’t have any attributes or methods
defined. A person cannot move on an obstacle tile. Despite of not imple-
menting anything, it is still useful to be able to check for obstacle tiles by
using

tile.isKindOf (Obstacle)

. The invariant obstacleCheck allows us to enforce that a person cannot be
on an obstacle tile.

class Obstacle inherits Tile {

inv obstacleCheck is do self.person == void end

b

3.2.5. Person

Person is an abstract class that represents a character in the game. A
person has a name, health and damage he can deal. It also holds a reference
to the tile it’s standing on. The class is abstract because of the abstract
operations attack() and checkAttack(). The reason they are abstract is be-
cause you don’t want to attack someone of your own type: hero — hero (in
practice not possible because multiple heroes would violate our meta-model)
or villain — villain in our formalism. Operation checkAttack() should return
true if there is a valid target on one of the neighbouring tiles. Attack() should
execute an attack move on one of the viable targets. Operations checkMove()
and move() basically do the same but for moving, i.e., check for valid move
locations and execute a move between tiles. checkDead() should be called ev-
ery time a person takes damage. They are not abstract however. It takes care
of printing some info to the console. Operation doAction() simply chooses at
random between attack or move based on the results of checkAttack() and

checkMove().

abstract class Person {

attribute name : String
attribute damage : Integer
attribute health : Integer
reference location : Tile#person

operation move() is do ... end
operation checkMove() : Boolean is do ... end

operation attack() is abstract
operation checkAttack() : Boolean is abstract

operation checkDead() : Boolean is ... do end
operation doAction() is do ... end
}

Hero inherits from Person and adds a reference to the keys he picked
up during the game. The operation move from Hero is overloaded by using
the method keyword. First, the operation move from Person is called by
executing super. Further, some code is added to handle visiting different

9

kind of tiles. In case of a door, if it’s locked we try it to unlock with the
hero’s collected keys. If the door is unlocked the hero moves through to the
tile in the .to reference. If it’s a trap, the trap’s damage is subtracted from
the hero’s health. With a basictile we check for an item. A key is picked
up and added to the set of keys, a weapon’s damage is added to the hero’s
damage and a goal is collected.

class Hero inherits Person {
reference keys : oset Key[O..x]

method move() from Person is

do

super

if isKindOf (Door) then do ... end

if isKindOf (Trap) then do ... end

if isKindOf (BasicTile) then do ... end

end

method attack() is do ... end

method checkAttack() : Boolean is do ... end
}

Villain inherits from Person and just implements the necessary code in
attack() en checkAttack(). The differences between the code in villain and
hero are minimal. Only the selectors are adjusted. A villain can’t do anything
with items so the we don’t need to overload the move() operation.

class Villain inherits Person {

method attack() is do ... end

method checkAttack() : Boolean is do ... end
}

3.2.6. Item

Item serves as an abstract base class for all other items to inherent from.

abstract class Item {

10

Key inherits from item. It doesn’t need any attributes or references
because doors themselves keep the information which key they need.

class Key inherits Item {

}

Weapon inherits from item and has one attribute damage. This damage
is added to the hero’s damage when he finds the weapon. The weapon is
then removed from the game.

class Weapon inherits Item {

attribute damage : Integer

}

Goal inherits from item and has one attribute collected. When the hero
finds the goal the attribute is set to true. The game element has a reference
to each goal so it can check after every step() if the hero has won the game
by collecting every goal.

class Goal inherits Item {

attribute collected : Boolean

b

3.3. Exzample model

Below is a sample model consisting of 2 scenes Forest and Swamp. There
are 2 villains and there is one goal.
Legend: H hero, T trap, w weapon, OOO obstacle, V villain, k key, D door

Forest:

| ——=|-—]-—=]|
| H| Tl wl| O
e e |
| |000|V,k| 1

11

0 1 2
| === === |-~
IDIVI 10
| === |-
I Tigl 11

Figure [3| shows how the model looks like when opened in eclipse.

¥ [platform:/resource/RPGame/model/myRPG.xmi
¥ <4 Game
¥ < Scene Forest
< Tile 0
< Trap 0
¥ < BasicTile0
< Weapon 20
<4 Tile1
<4 Obstacle 1
¥ < BasicTile 1
4+ Key
<4 Trap 2
<4 Tile 2
< Door2
¥ < Scene Swamp
< Door0
<4 Tile 0
<4 Tile 0
< Trap 1
¥ < Basic Tile 1
4 Goal false
<4 Tile 1
<+ Hero Link
< Villain Vil
< Villain Vil2
P = platform:/resource/RPGame/metamodel/RPGame.ecore

P = platform:/plugin/fr.irisa.triskell.kermeta.iofsrc/kermeta/framework.ecore

Figure 3: RPGame model with 2 scenes

12

Opening this model with a text editor shows the xml. The xml is very
readable and easy to understand.

<?xml version="1.0" encoding="ASCII"?7>
<RPGameMeta:Game
xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:RPGameMeta="platform:/resource/RPGame/metamodel/RPGame.ecore#/"
xsi:schemalocation="platform:/resource/RPGame/metamodel/RPGame.ecore#/
. ./metamodel/RPGame.ecore#/1"
goals="//@scenes.1/0tiles.4/@item">
<scenes name="Forest">
<tiles x="0"
y="0”
scene="//@scenes.0"
neighbours="//0scenes.0/Qtiles.1 //@scenes.0/Qtiles.3"
person="//@hero"/>
<tiles xsi:type="RPGameMeta:Trap"
X="O”
y=l| 1l|
scene="//@scenes.0"
neighbours="//@scenes.0/0@tiles.0 //@scenes.0/Q@tiles.2
//@scenes.0/Qtiles.4"
damage="10"/>
<tiles xsi:type="RPGameMeta:BasicTile"
X=I|Oll
y=||2ll
scene="//@scenes.0"
neighbours="//@scenes.0/@tiles.1 //@scenes.0/@tiles.5">
<item
xsi:type="RPGameMeta:Weapon"
damage="20"/>
</tiles>
<tiles x="1"
y="0”
scene="//@scenes.0"
neighbours="//@scenes.0/0tiles.0 //@scenes.0/Qtiles.4

13

//@scenes.0/Qtiles.6"/>
<tiles xsi:type="RPGameMeta:Obstacle"
x="1"
y="1"
scene="//@scenes.0"
neighbours="//@scenes.0/0@tiles.1 //Q@scenes.0/Qtiles.3
//@scenes.0/Q@tiles.5 //@scenes.0/Q@tiles.7"/>
<tiles xsi:type="RPGameMeta:BasicTile"
x="1"
y="2"
scene="//@scenes.0"
neighbours="//@scenes.0/0tiles.2 //@scenes.0/Qtiles.4
//@scenes.0/@tiles.8"
person="//@villains.0">

<item
xsi:type="RPGameMeta:Key"/>
</tiles>
<tiles xsi:type="RPGameMeta:Trap"
x="on
y="1"

scene="//@scenes.0"
neighbours="//@scenes.0/0tiles.3 //@scenes.0/Qtiles.7"
damage="10"/>
<tiles x="2"
y="1"
scene="//@scenes.0"
neighbours="//@scenes.0/0tiles.6 //@scenes.0/Qtiles.4
//@scenes.0/Qtiles.8"/>
<tiles xsi:type="RPGameMeta:Door"
x="2"
y="2"
scene="//@scenes.0"
neighbours="//@scenes.0/0@tiles.7 //@scenes.0/Qtiles.5"
locked="true"
key="//@scenes.0/@tiles.5/Q@item"
to="//@scenes.1/0@tiles.0"/>
</scenes>
<scenes name='"Swamp">

14

<tiles xsi:type="RPGameMeta:Door"
x="0"
y="0"
scene="//@scenes.1"
neighbours="//@scenes.1/0tiles.1 //@scenes.1/@tiles.3"
locked="true"
to="//@scenes.0/@tiles.8"/>
<tiles x="0"
y="1"
scene="//@scenes.1"
neighbours="//@scenes.1/0tiles.0 //@scenes.1/@tiles.2
//@scenes.1/0@tiles.4"
person="//@villains.1"/>
<tiles x="0O"
y="2"
scene="//@scenes.1"
neighbours="//@scenes.1/0@tiles.1 //@scenes.1/0tiles.5"/>
<tiles xsi:type="RPGameMeta:Trap"
x="1"
y="0"
scene="//@scenes.1"
neighbours="//@scenes.1/0tiles.0 //@scenes.1/Qtiles.4"
damage="10"/>
<tiles xsi:type="RPGameMeta:BasicTile"
x="1"
y="1"
scene="//@scenes.1"
neighbours="//@scenes.1/0tiles.3 //@scenes.1/Qtiles.1
//@scenes.1/0Qtiles.5">
<item
xsi:type="RPGameMeta:Goal"
collected="false"/>
</tiles>
<tiles x="1"
y="2"
scene="//@scenes.1"
neighbours="//@scenes.1/0tiles.4 //@scenes.1/@tiles.2"/>
</scenes>

15

<hero name="Link"

damage="30"

health="900"

location="//@scenes.0/0@tiles.0"/>
<villains

name="Vill"

damage="20"

health="100"

location="//@scenes.0/@tiles.5"/>
<villains

name="Vil2"

damage="25"

health="100"

location="//@scenes.1/0@tiles.1"/>

</RPGameMeta:Game>

3.4. Running the example

You need the Eclipse IDE with the Eclipse Modeling Tools and Kermeta
Workbench (version 1).
Easiest way is to follow these steps:

1.

6.
7.
8.

Download the Eclipse Modeling Tools version of Eclipse from http://
www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosri
Install Kermeta Workbench from the Eclipse Marketplace (Help —

Eclipse Marketplace)

Create a new Kermeta project called RPGame

Copy the contents of the RPGame folder delivered with this report into

your kermeta project folder

Right click on run.kmt — Run As — Run Configurations — goto tab

Java Classpath

Left click on User Entries — Add External JARs

Browse to your eclipse installation — plugins — org.kermeta.language.mdk_1.4.0.jar
Now click Run

Bug: If you regenerate the .ecore meta-model file from RPGame.kmt,
one of the types is not correct. You should search for the following line:

<eClassifiers xsi:type="ecore:EDataType" name="Integer"
instanceClassName="java.lang.0Object">

16

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/junosr1

And replace it with:

<eClassifiers xsi:type="ecore:EDataType" name="Integer"
instanceClassName="java.lang.Integer">

4. Comparison with other domain-specific modeling techniques

4.1. metaDepth

Metadepth |de Lara and Guerra| (2010) describes itself as a framework
for multi-level meta-modeling. It takes more of a procedural approach. It
uses nodes (similar to structs in C) and operations. The structural part of
meta-models and models themselves are defined in metadepth. Metadepth
depends on the Eclipse Object Language (EOL) for adding behavior to meta-
models. Similar to kermeta, metadepth (or rather EOL) makes use of the
OCL for model navigation. Kermeta and metadepth are actually surprisingly
similar despite the difference in paradigm. If the metadepth nodes changed
in name to classes and the operations would become methods you would
almost have kermeta code. They are also both interpreted by Java code.
The syntax for associations is exactly the same and invariants can be defined
and checked in a similar way. One advantage metadepth is that you can all
instances anywhere in the action code. In kermeta you can only access the
root element and go from there through your model. Kermeta however has a
clear advantage is tool support. Having a (visual) debugger can be of great
value and save you a lot of time. This even becomes more important if your
(meta-)models become more complex. Because kermeta uses xmi to store its
models, you can also use a variety of other modeling tools.

4.2. AToM?

AToM? is a very flexible tool which supports a vast number modeling
techniques. In case of coded operational semantics in atom3, you can take
a very similar approach for implementing the rpgame formalism in kermeta.
Draw an ecore diagram in EMF with the correct associations, methods and
constraints. From that ecore diagram you can generate an ecore meta-model
from which you can finally generate a kermeta meta-model. One of the key
differences and strengths of AToM? is that you can generate of nice visual
representation of your models. AToM? also gives you the possibility to move
further away from a coding approach by rule-based semantics. The stability
of the tool however remains a problem, as well a lacking some basic features

17

like undo. It has some basic debugging tools built-in but because it runs
directly in python, any python debugger could be used.

5. Converting AToM? models into Kermeta models

5.1. Implementation

To be able to reuse models in kermeta which where created in AToM3, T
created some python code to write out AToM? models to xmi. I made use of
the built-in python library xml.etree.ElementTree to achieve this.

For starters, I implemented the rpgame formalism in python which closely
follows the kermeta implementation.ﬁ] Naturally, no operational semantics
are implemented because we only want to mimic the abstract syntax. Each
class has at least a method getXml(rootElement) which returns an xml el-
ement. The parameter rootElement allows to attach the new element to a
root element which allows us to create the necessary nesting. For example,
Scene.getXml():

def getXml(self, rootElement):
e = SubElement(rootElement, "scenes")
e.set("name", self.name)
return e

Classes which extend another class don’t have to re implement getXml()
completely. They first call getXml() of their parent through super and use
the returned element to set some extra attributes. For example, Trap which
extends Tile:

def getXml(self, rootElement):
e = super(Trap, self).getXml(rootElement)
e.set("xsi:type", "RPGameMeta:Trap")
e.set("damage", self.damage)
return e

Another useful method which most classes have is getModelPath(). This
method returns the path of an element in a model in the form of a string,
e.g. for a tile: //@scenes.0/@tiles.2. This provides an easy way for objects

4This code can be found in dataTypes.py

18

to get and store these paths without having to do anything themselves. For
example, tile keeps its neighbours in an array of strings. When getXml() is
called it can simply do

" ".join(self.neighbours)

The basic idea is also that each object keeps track of the objects that need
to be nested in the xmi document. This way we can generate the document
by nesting for-loops as we’ll see later.

The actual conversion is done in the class XmiGenerator] First, we parse
all the non-link elements from ASGroot by calling the method genObj(). We
store each element in a list and create a corresponding dataTypes object
which is also stored in a list. For example:

def getTraps(self):
traps = self.asgroot.listNodes["Trap"]
self.tiles.extend(traps)
for tile in traps:
self.tilesObj.append(Trap(tile, len(self.tilesObj)))

Storing the ASGroot element serves no other purpose than to be able to
get the correct object when parsing links. This works because they have the
same index in both lists. Example:

def getScenelbj(self, scene):
return self.scenesObj[self.scenes.index(scene)]

Parsing all the different links in done by calling solveLinks(). Again,
there is a basic idea that is applied for each type. A link is always between
2 elements (in our formalism anyway). We use each element to get the
corresponding object. Then we can execute the necessary actions to enable
the same link in the kermeta model. Example:

def personOnTileLinks(self):
pOTLs = self.asgroot.listNodes["PersonOnTileLink"]

5This code can be found in genXMIL.py

19

for pOTL in pOTLs:
person = pOTL.in_connections_[0]
tile = pOTL.out_connections_[0]
personObj = self.getPersonObj(person)
tileObj = self.getTileObj(tile)
tileObj.person = personObj.getModelPath()
personObj.location = tileObj.getModelPath()

Finally we can call genXMI(). The actions described above are all called
in the constructor so this is only method that a user of the class should call.
An object keeps track of its direct subelements so we can create most of the
xmi document by nesting for loops.

def genXMI(self):
gameXml = self.gameQObj.getXml()
for scenelbj in self.scenesObj:
sceneXml = sceneObj.getXml (gameXml)
for tileObj in scene(Obj.tiles:
tileXml = tileObj.getXml(sceneXml)

try:

itemObj = tileObj.item

itemXml = item0Obj.getXml(tileXml)
except Exception:

pass

heroXml = self.heroObj.getXml(gameXml)
for villainObj in self.villainsObj:
villainXml = villainObj.getXml (gameXml)

return gameXml

Only BasicTile objects have an item attribute but the rest of the objects
in the tiles’ list not. In addition to that, we don’t know if the item is actually
set. Therefor, this code is placed in a try - except block.

5.2. Running AToM?

To test our implementation you should use the included AToM? version.
We encountered a bug (for our implementation anyway) in AToM? which is
fixed in the included version. Testing can be done with the following model:

20

atom3/User Models/RPGame_Models/ForestSwampCastleWithAssociations_RPGame_MDL.py
Use the following GraphGrammar:

atom3/User Formalisms/RPGame/RPGTransformations_exec/RPG_GG_exec.py

6. Conclusion

The kermeta framework is very stable with its future cut out. Version
2 is already released and promises improved performance over version 1 by
allowing compilation. Using standardized techniques by the OMG, it au-
tomatically opens its framework up for other modeling tools to be used to
manipulate both models and meta-models.

Combining the abstract syntax and behavioral code feels very natural for
programmers coming from a non modeling background.

Converting models from AToM? to Kermeta proved to be fairly easy and
painless. However this could be made even simpler if AToM? would provide
a default export of its models to xmi. This would allow the use of modeling
tools, such as kermeta, to execute model transformations instead of relying
on normal python code to do the task.

References

de Lara, J., Guerra, E., 2010. Deep meta-modelling with metadepth.
URL http://astreo.ii.uam.es/~jlara/metaDepth/papers/TOOLS.
pdf

Eclipse, 2013. Eclipse modeling framework project.
URL http://www.eclipse.org/modeling/emf/

Muller, P., Fleurey, F., Vojtisek, D., Drey, Z., Pollet, D., Fondement, F.,
Studer, P., Jzquel, J., 2005. On executable meta-languages applied to
model transformations.

URL http://www.irisa.fr/triskell/publis/2005/Muller05c.pdf

OMG, 2006. Mof 2.0 core specification.
URL http://www.omg.org/spec/MOF/2.0/

OMG, 2011. Mof/xmi mapping, version 2.4.1.
URL http://www.omg.org/spec/XMI/2.4.1/

21

http://astreo.ii.uam.es/~jlara/metaDepth/papers/TOOLS.pdf
http://astreo.ii.uam.es/~jlara/metaDepth/papers/TOOLS.pdf
http://www.eclipse.org/modeling/emf/
http://www.irisa.fr/triskell/publis/2005/Muller05c.pdf
http://www.omg.org/spec/MOF/2.0/
http://www.omg.org/spec/XMI/2.4.1/

OMG, 2012. Object constraint language, version 2.3.1.
URL http://www.omg.org/spec/0CL/2.3.1/

22

http://www.omg.org/spec/OCL/2.3.1/

	Introduction
	Kermeta
	Kermeta language
	Models
	Platform
	Kermeta 2

	Implementing the role-playing game formalism in Kermeta
	Role-playing game formalism
	Meta-model
	Files
	Game
	Scene
	Tile
	Person
	Item

	Example model
	Running the example

	Comparison with other domain-specific modeling techniques
	metaDepth
	AToM3

	Converting AToM3 models into Kermeta models
	Implementation
	Running AToM3

	Conclusion

